聚类--K均值算法:自主实现与sklearn.cluster.KMeans调用
1.用python实现K均值算法
K-means是一个反复迭代的过程,算法分为四个步骤:(x,k,y)
import numpy as npx = np.random.randint(1,100,[20,1])y = np.zeros(20)k = 3#1) 选取数据空间中的K个对象作为初始中心,每个对象代表一个聚类中心;def initcenter(x,k): return x[0:k].reshape(k)#2) 对于样本中的数据对象,根据它们与这些聚类中心的欧氏距离,按距离最近的准则将它们分到距离它们最近的聚类中心(最相似)所对应的类;def nearest(kc,i): d = abs(kc-i) w = np.where(d == np.min(d)) return w[0][0]def xclassify(x,y,kc): for i in range(x.shape[0]): y[i] = nearset(kc,x[i]) return y#3) 更新聚类中心:将每个类别中所有对象所对应的均值作为该类别的聚类中心,计算目标函数的值;def kcmean(x,y,kc,k): l = list(kc) flag = False for c in range(k): print(c) m = np.where(y == c) n=np.mean(x[m]) if l[c] != n: l[c] = n flag = True print(l,flag) return (np.array(1),flag) #4) 判断聚类中心和目标函数的值是否发生改变,若不变,则输出结果,若改变,则返回2)。k=3kc = initcenter(x,k)flag = Trueprint(x,y,kc,flag) while flag: y = xclassify(x,y,kc) kc,flag = kcmean(x,y,kc,k)print(x,y)
2. 鸢尾花花瓣长度数据做聚类并用散点图显示。
from sklearn.datasets import load_irisiris = load_iris()datas = iris.datairis_length=datas[:,2]x = np.array(iris_length)y = np.zeros(x.shape[0])kc = initcenter(x,3)flag = Truewhile flag: y = xclassify(x,y,kc) kc,flag = kcmean(x,y,kc,3)print(kc,flag) import matplotlib.pyplot as pltplt.scatter(iris_length, iris_length, marker='p', c=y, alpha=0.5, linewidths=4, cmap='Paired')plt.show()
3. 用sklearn.cluster.KMeans,鸢尾花花瓣长度数据做聚类并用散点图显示.
from sklearn.cluster import KMeansiris_length = datas[:,2:3]k_means = KMeans(n_clusters=3)result = k_means.fit(iris_length)kc1 = result.cluster_centers_y_kmeans = k_means.predict(iris_length)plt.scatter(iris_length,np.linspace(1,150,150),c=y_kmeans,marker='*',cmap='rainbow',linewidths=4)plt.show()
4. 鸢尾花完整数据做聚类并用散点图显示.
k_means1 = KMeans(n_clusters=3)result1 = k_means1.fit(datas)kc2 = result1.cluster_centers_y_kmeans1 = k_means1.predict(datas)print(y_kmeans1, kc2)print(kc2.shape, y_kmeans1.shape, datas.shape)plt.scatter(datas[:, 0], datas[:, 1], c=y_kmeans1, marker='p', cmap='flag', linewidths=4, alpha=0.6)plt.show()